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Exam III

Ayman Badawi

QUESTION 1. Let n = 25(72)(23) and let D be the set of all divisors of n.

(i) Find |D|.

(ii) Find σ(n), i.e., the sum of all divisors of n.

(iii) Let F = {d ∈ D, such that, 28 | d}. Find |F |. Find
∑

f∈F f .

QUESTION 2. (Show the work) Assume that a, b, c are positive integers such that a | bc. Assume that gcd(a, b) =
1. Prove that a | c.

QUESTION 3. Let n = d1d2 · · · dm, m ≥ 5, where 1 ≤ d1 ≤ 9, and 0 ≤ di ≤ 9 for every 2 ≤ i ≤ m. Assume
that 101 | n. Prove that 101 | (d1 · · · d(m−2) − d(m−1)dm). (see class notes, but multiply with 100)
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QUESTION 4. Prove the converse of Q5.

QUESTION 5. Show the work. Use the algorithm as in Q5 and Q6.

(i) Is 5,656 divisible by 101?

(ii) Is 12,423 divisible by 101?

(iii) Is 54,134 divisible by 101?

QUESTION 6. Find the largest positive integer n such that (n+ 21) | (3n4 + 5n+ 10).

QUESTION 7. Consider U(26).

(a) Can we generate U(26) by one element? If yes find a generator.
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(b) Find 4 −R(U(26)).

(c) Solve for x over U(26), x4 = 3.

(d) Find all integers over Z, say x, such that gcd(x, 26) = 1 and x4 (mod 26) = 3.
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QUESTION 8. Prove that (p− 1)! (mod p) = p− 1 for every odd prime positive integer.

QUESTION 9. (show the work) Find all positive prime integers, say p, such that p | (389p + 1).

QUESTION 10. Let m > 1 be an integer and f(n) = nm + am−1n
m−1 + ... + a1n + a0, where all the a′is are

integers and n ∈ Z. Given f(b1) = f(b2) = 22 for some distinct b1, b2 ∈ Z. Prove that f(k) ̸= 23 for every k ∈ Z.
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