Exam III

Ayman Badawi

QUESTION 1. Let $n = 25(7^2)(2^3)$ and let D be the set of all divisors of n.

(i) Find |D|.

(ii) Find $\sigma(n)$, i.e., the sum of all divisors of n.

(iii) Let $F = \{ d \in D$, such that, 28 | $d \}$. Find |F|. Find $\sum_{f \in F} f$.

QUESTION 2. (Show the work) Assume that a, b, c are positive integers such that $a \mid bc$. Assume that gcd(a, b) = 1. Prove that $a \mid c$.

QUESTION 4. Prove the converse of Q5.

QUESTION 5. Show the work. Use the algorithm as in Q5 and Q6.

- (i) Is 5,656 divisible by 101?
- (ii) Is 12,423 divisible by 101?
- (iii) Is 54,134 divisible by 101?

QUESTION 6. Find the largest positive integer n such that $(n + 21) | (3n^4 + 5n + 10)$.

(b) Find 4 - R(U(26)).

(c) Solve for x over U(26), $x^4 = 3$.

(d) Find all integers over Z, say x, such that gcd(x, 26) = 1 and $x^4 \pmod{26} = 3$.

QUESTION 8. Prove that $(p-1)! \pmod{p} = p-1$ for every odd prime positive integer.

QUESTION 9. (show the work) Find all positive prime integers, say p, such that $p \mid (389^p + 1)$.

QUESTION 10. Let m > 1 be an integer and $f(n) = n^m + a_{m-1}n^{m-1} + ... + a_1n + a_0$, where all the $a'_i s$ are integers and $n \in \mathbb{Z}$. Given $f(b_1) = f(b_2) = 22$ for some distinct $b_1, b_2 \in \mathbb{Z}$. Prove that $f(k) \neq 23$ for every $k \in \mathbb{Z}$.

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.

E-mail: abadawi@aus.edu, www.ayman-badawi.com